Binding of ArgTX-636 in the NMDA receptor ion channel.

نویسندگان

  • Mette H Poulsen
  • Jacob Andersen
  • Rune Christensen
  • Kasper B Hansen
  • Stephen F Traynelis
  • Kristian Strømgaard
  • Anders Skov Kristensen
چکیده

The N-methyl-d-aspartate receptors (NMDARs) constitute an important class of ligand-gated cation channels that are involved in the majority of excitatory neurotransmission in the human brain. Compounds that bind in the NMDAR ion channel and act as blockers are use- and voltage-dependent inhibitors of NMDAR activity and have therapeutic potential for treatment of a variety of brain diseases or as pharmacological tools for studies of the neurobiological role of NMDARs. We have performed a kinetic analysis of the blocking mechanism of the prototypical polyamine toxin NMDAR ion channel blocker argiotoxin-636 (ArgTX-636) at recombinant GluN1/2A receptors to provide detailed information on the mechanism of block. The predicted binding site of ArgTX-636 is in the pore region of the NMDAR ion channel formed by residues in the transmembrane M3 and the M2 pore-loop segments of the GluN1 and GluN2A subunits. To assess the predicted binding mode in further detail, we performed an alanine- and glycine-scanning mutational analysis of this pore-loop segment to systematically probe the role of pore-lining M2 residues in GluN1 and GluN2A in the channel block by ArgTX-636. Comparison of M2 positions in GluN1 and GluN2A where mutation influences ArgTX-636 potency suggests differential contribution of the M2-loops of GluN1 and GluN2A to binding of ArgTX-636. The results of the mutational analysis are highly relevant for the future structure-based development of argiotoxin-derived NMDAR channel blockers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyamine amides are neuroprotective in cerebellar granule cell cultures challenged with excitatory amino acids.

Primary cultures of rat cerebellar granule cells have been used to assess the potential neuroprotective effects of philanthotoxins and argiotoxin-636 (ArgTX-636). These polyamine amides are potent antagonists of ionotropic L-glutamate (L-Glu) receptors. In granule cells loaded with fluo-3, ArgTX-636 and philanthotoxin-343 (PhTX-343) antagonised increases of intracellular free calcium concentrat...

متن کامل

Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit.

N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors (iGluRs) that mediate the majority of fast excitatory synaptic transmission in the mammalian brain. One of the hallmarks for the function of NMDA receptors is that their ion channel activity is allosterically regulated by binding of modulator compounds to the extracellular amino-terminal domain (ATD) di...

متن کامل

Modulation of the N-methyl-D-aspartate receptor by polyamines: molecular pharmacology and mechanisms of action.

Introduction Glutamate is the major fast excitatory neurotransmitter in the vertebrate central nervous system. Glutamate receptors that are ligand-gated ion channels are classified on the basis of their sensitivity to the selective agonists N-methyl-11-aspartate (NMDA), a-arnino-3-hydroxy-S-methyl-4-isoxazoleproprionic acid (AMPA) and kainate. NMDA receptors play a key role in the generation of...

متن کامل

Activation of NMDA receptors and the mechanism of inhibition by ifenprodil

The physiology of N-methyl-d-aspartate (NMDA) receptors is fundamental to brain development and function. NMDA receptors are ionotropic glutamate receptors that function as heterotetramers composed mainly of GluN1 and GluN2 subunits. Activation of NMDA receptors requires binding of neurotransmitter agonists to a ligand-binding domain (LBD) and structural rearrangement of an amino-terminal domai...

متن کامل

Lead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells

Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 427 1  شماره 

صفحات  -

تاریخ انتشار 2015